\(\int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx\) [136]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 177 \[ \int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx=-\frac {(A b-a B) (c+d x)^{1+n} (e+f x)^p \left (\frac {d (e+f x)}{d e-c f}\right )^{-p} \operatorname {AppellF1}\left (1+n,1,-p,2+n,\frac {b (c+d x)}{b c-a d},-\frac {f (c+d x)}{d e-c f}\right )}{b (b c-a d) (1+n)}-\frac {B (c+d x)^{1+n} (e+f x)^{1+p} \operatorname {Hypergeometric2F1}\left (1,2+n+p,2+p,\frac {d (e+f x)}{d e-c f}\right )}{b (d e-c f) (1+p)} \]

[Out]

-(A*b-B*a)*(d*x+c)^(1+n)*(f*x+e)^p*AppellF1(1+n,1,-p,2+n,b*(d*x+c)/(-a*d+b*c),-f*(d*x+c)/(-c*f+d*e))/b/(-a*d+b
*c)/(1+n)/((d*(f*x+e)/(-c*f+d*e))^p)-B*(d*x+c)^(1+n)*(f*x+e)^(p+1)*hypergeom([1, 2+n+p],[2+p],d*(f*x+e)/(-c*f+
d*e))/b/(-c*f+d*e)/(p+1)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.07, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {163, 72, 71, 142, 141} \[ \int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx=\frac {B (c+d x)^{n+1} (e+f x)^p \left (\frac {d (e+f x)}{d e-c f}\right )^{-p} \operatorname {Hypergeometric2F1}\left (n+1,-p,n+2,-\frac {f (c+d x)}{d e-c f}\right )}{b d (n+1)}-\frac {(A b-a B) (c+d x)^{n+1} (e+f x)^p \left (\frac {d (e+f x)}{d e-c f}\right )^{-p} \operatorname {AppellF1}\left (n+1,-p,1,n+2,-\frac {f (c+d x)}{d e-c f},\frac {b (c+d x)}{b c-a d}\right )}{b (n+1) (b c-a d)} \]

[In]

Int[((A + B*x)*(c + d*x)^n*(e + f*x)^p)/(a + b*x),x]

[Out]

-(((A*b - a*B)*(c + d*x)^(1 + n)*(e + f*x)^p*AppellF1[1 + n, -p, 1, 2 + n, -((f*(c + d*x))/(d*e - c*f)), (b*(c
 + d*x))/(b*c - a*d)])/(b*(b*c - a*d)*(1 + n)*((d*(e + f*x))/(d*e - c*f))^p)) + (B*(c + d*x)^(1 + n)*(e + f*x)
^p*Hypergeometric2F1[1 + n, -p, 2 + n, -((f*(c + d*x))/(d*e - c*f))])/(b*d*(1 + n)*((d*(e + f*x))/(d*e - c*f))
^p)

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 141

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(b*e - a*f
)^p*((a + b*x)^(m + 1)/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(
b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rule 142

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^
FracPart[n]/((b/(b*c - a*d))^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*(b*(c/(b*c -
 a*d)) + b*d*(x/(b*c - a*d)))^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&
 !IntegerQ[n] && IntegerQ[p] &&  !GtQ[b/(b*c - a*d), 0] &&  !SimplerQ[c + d*x, a + b*x]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {B \int (c+d x)^n (e+f x)^p \, dx}{b}+\frac {(A b-a B) \int \frac {(c+d x)^n (e+f x)^p}{a+b x} \, dx}{b} \\ & = \frac {\left (B (e+f x)^p \left (\frac {d (e+f x)}{d e-c f}\right )^{-p}\right ) \int (c+d x)^n \left (\frac {d e}{d e-c f}+\frac {d f x}{d e-c f}\right )^p \, dx}{b}+\frac {\left ((A b-a B) (e+f x)^p \left (\frac {d (e+f x)}{d e-c f}\right )^{-p}\right ) \int \frac {(c+d x)^n \left (\frac {d e}{d e-c f}+\frac {d f x}{d e-c f}\right )^p}{a+b x} \, dx}{b} \\ & = -\frac {(A b-a B) (c+d x)^{1+n} (e+f x)^p \left (\frac {d (e+f x)}{d e-c f}\right )^{-p} F_1\left (1+n;-p,1;2+n;-\frac {f (c+d x)}{d e-c f},\frac {b (c+d x)}{b c-a d}\right )}{b (b c-a d) (1+n)}+\frac {B (c+d x)^{1+n} (e+f x)^p \left (\frac {d (e+f x)}{d e-c f}\right )^{-p} \, _2F_1\left (1+n,-p;2+n;-\frac {f (c+d x)}{d e-c f}\right )}{b d (1+n)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.12 \[ \int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx=\frac {(c+d x)^n (e+f x)^p \left (\frac {(A b-a B) \left (\frac {b (c+d x)}{d (a+b x)}\right )^{-n} \left (\frac {b (e+f x)}{f (a+b x)}\right )^{-p} \operatorname {AppellF1}\left (-n-p,-n,-p,1-n-p,\frac {-b c+a d}{d (a+b x)},\frac {-b e+a f}{f (a+b x)}\right )}{n+p}+\frac {b B \left (\frac {f (c+d x)}{-d e+c f}\right )^{-n} (e+f x) \operatorname {Hypergeometric2F1}\left (-n,1+p,2+p,\frac {d (e+f x)}{d e-c f}\right )}{f (1+p)}\right )}{b^2} \]

[In]

Integrate[((A + B*x)*(c + d*x)^n*(e + f*x)^p)/(a + b*x),x]

[Out]

((c + d*x)^n*(e + f*x)^p*(((A*b - a*B)*AppellF1[-n - p, -n, -p, 1 - n - p, (-(b*c) + a*d)/(d*(a + b*x)), (-(b*
e) + a*f)/(f*(a + b*x))])/((n + p)*((b*(c + d*x))/(d*(a + b*x)))^n*((b*(e + f*x))/(f*(a + b*x)))^p) + (b*B*(e
+ f*x)*Hypergeometric2F1[-n, 1 + p, 2 + p, (d*(e + f*x))/(d*e - c*f)])/(f*(1 + p)*((f*(c + d*x))/(-(d*e) + c*f
))^n)))/b^2

Maple [F]

\[\int \frac {\left (B x +A \right ) \left (d x +c \right )^{n} \left (f x +e \right )^{p}}{b x +a}d x\]

[In]

int((B*x+A)*(d*x+c)^n*(f*x+e)^p/(b*x+a),x)

[Out]

int((B*x+A)*(d*x+c)^n*(f*x+e)^p/(b*x+a),x)

Fricas [F]

\[ \int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx=\int { \frac {{\left (B x + A\right )} {\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{b x + a} \,d x } \]

[In]

integrate((B*x+A)*(d*x+c)^n*(f*x+e)^p/(b*x+a),x, algorithm="fricas")

[Out]

integral((B*x + A)*(d*x + c)^n*(f*x + e)^p/(b*x + a), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx=\text {Timed out} \]

[In]

integrate((B*x+A)*(d*x+c)**n*(f*x+e)**p/(b*x+a),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx=\int { \frac {{\left (B x + A\right )} {\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{b x + a} \,d x } \]

[In]

integrate((B*x+A)*(d*x+c)^n*(f*x+e)^p/(b*x+a),x, algorithm="maxima")

[Out]

integrate((B*x + A)*(d*x + c)^n*(f*x + e)^p/(b*x + a), x)

Giac [F]

\[ \int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx=\int { \frac {{\left (B x + A\right )} {\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{b x + a} \,d x } \]

[In]

integrate((B*x+A)*(d*x+c)^n*(f*x+e)^p/(b*x+a),x, algorithm="giac")

[Out]

integrate((B*x + A)*(d*x + c)^n*(f*x + e)^p/(b*x + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B x) (c+d x)^n (e+f x)^p}{a+b x} \, dx=\int \frac {{\left (e+f\,x\right )}^p\,\left (A+B\,x\right )\,{\left (c+d\,x\right )}^n}{a+b\,x} \,d x \]

[In]

int(((e + f*x)^p*(A + B*x)*(c + d*x)^n)/(a + b*x),x)

[Out]

int(((e + f*x)^p*(A + B*x)*(c + d*x)^n)/(a + b*x), x)